<~ 2 Each$cape

Developer Guide to Building

EachScape Blocks

February 2012

Introduction

EachScape Architecture
Block Architecture

Creating Blocks in the Builder
Creating iOS Blocks

Creating Android Blocks 12

© N B~ DN -

Developer Guide to Building EachScape Blocks

Introduction

EachScape is a powerful application development system that enables app producers to
take a building-block approach to developing mobile applications. It offers a drag and drop
environment that can be used by app producers to create and manage high-end mobile
applications without coding. EachScape enables its users to build custom applications with
great design and functionality for iOS, Android, and HTMLS. The applications can run on
phones, tablets, and connected TVs that support those platforms.

At the simplest level, an EachScape block is code that plays by a certain set of rules, gath-
ers and displays data, and presents and manages Ul components. Blocks are components
of the EachScape development environment, which is called the Builder. The Builder can
be used to create applications for devices running iOS, Android, or HTML5. App produc-
ers create their mobile apps in the EachScape Builder using blocks. App producers literally
assemble mobile applications largely by dragging and dropping blocks in the Builder (with a
little bit of additional configuration in the same interface).

In order for app producers to create in EachScape, they need blocks to assemble. By offer-
ing your functionality as a block in EachScape, you can offer EachScape customers (app
producers) the ability to easily incorporate your unique functionality into their mobile apps.

Blocks are code that implements a Ul element based on certain rules. The code in a block
can gather data from many sources, display and gather information from the end-user, react
to system events such as tapping, pinching, and stretching, invoke services on the device
or the Internet, and fire events that can be handled by scripted actions inside EachScape’s
application design environment. The code in a block intermediates between the device’s
native operating system and the EachScape development and runtime environment, provid-
ing instructions for the device to execute application functions and transfer feedback from
device events to the application.

Some blocks were created by EachScape developers as part of the EachScape platform.
Independent developers (like you) can also create blocks and offer them to EachScape cus-
tomers through the Block Marketplace.

Once a block is added to the Block Marketplace, it generally becomes available to all Each-
Scape customers, ranging from large enterprises, including media and consumer packaged
goods companies, to small- and mid-size businesses. Blocks can be offered via license or
sale, meaning that the developer can grant the right to use the block to EachScape cus-
tomers (in other words, the block is available to customers who license that block from
you). EachScape creates a business relationship with developers contributing blocks to the
Builder and shares revenue with contributors.

Blocks are part of the EachScape environment, which creates a native version of the ap-
plications it generates. This means that each block is available only on each native platform
you provide code for. To fully support the block on EachScape, you should write a version of
it for each native platform.

EachScape, Inc. 1

Developer Guide to Building EachScape Blocks

This guide is intended to help developers understand the following concepts:

* How blocks fit into the cross platform web-based development environment that EachS-
cape app producers use to create applications

* How to code blocks in iOS and Android development environments

EachScape offers a platform-independent way of creating applications. After reading this
guide, most developers familiar with native mobile device operating systems will understand
the skills needed and amount of work required to create a block.

This guide is broken into the following sections:

+ EachScape Architecture: Explains what EachScape is and how it works

* Block Architecture: Provides a high-level overview of the process for developing a
block and offering it in the Block Marketplace

* How the Builder Uses Blocks: Explains how the EachScape app development environ-
ment (called the Builder) uses blocks

* How to Create Blocks: Explains how to create blocks in the Builder

+ Creating iOS Blocks: Provides guidance about writing and implementing blocks in the
Apple iOS environment

* Creating Android Blocks: Provides guidance about writing and implementing blocks in
the Google Android environment

EachScape Architecture

In order to talk about EachScape, we need to define three types of users:

* Block developers: People who code blocks, which can be made available to app pro-
ducers

* App producers: People who use blocks in EachScape to assemble mobile apps
* App users: People who use apps created by app producers on their devices

The EachScape architecture includes the following elements, all of which can be manipu-
lated in the Builder:

* View: Asingle page of an app. A view fills the entire screen of the device, replacing any
previously displayed views

e Layer: Each view can have multiple layers. The app user can see the layers one at a
time, based on events she generates. Layers can be turned on or off by the app produc-
er. A block can exist on either a view or on a layer

e Event: Two types of events must be distinguished in an EachScape application. System
events come from user actions such as taps, pinches, swipes, and so on. The code in
a block registers a handler that captures the system event and then does something to
change the display or to fire an EachScape event to trigger some script action in the

EachScape, Inc. 2

Developer Guide to Building EachScape Blocks

EachScape application. An EachScape event, which we just call events in this docu-
ment, can be connected to script actions defined by the app producer

e Script action: Script actions are defined in the Builder. They can invoke different types
of functionality, including calls to external services (such as “log onto Facebook”), dis-
playing another view, or displaying or hiding a layer. A script action is selected from a
menu in the Builder by an app producer

Communication from a block is unidirectional. A block can invoke an event, and an event
can invoke script actions. But a script action cannot make a block do anything. A script ac-
tion can set a global variable, which, combined with another script action called after setting
the variable, refreshes the block. A script action could make a layer disappear and make a
new block appear, but it cannot directly affect a block. Blocks can be invoked only by sys-
tem events.

e« Master Block: A Master Block defines a block’s basic characteristics. Blocks are in-
stances of a Master Block

EachScape has a global namespace for variables, but does not deploy parameter passing.
If your script action needs data or a variable from a block, the block must place that data in a
global variable.

EachScape, Inc. 3

Developer Guide to Building EachScape Blocks

Block Architecture

In this section, we explore the basic structure of a block and describe how it fits into the
EachScape architecture. Blocks are developed in the Builder.

Specific Tab: Events Tab:
Specify font, layout, Connect script
and settings actions with events

General Tab:
Set background et et %
for the block o o

chatara)

List
of blocks

The Builder

EachScape, Inc. 4

Developer Guide to Building EachScape Blocks

Block Functions

Blocks can appear in three areas of the screen. Blocks above the top red line are anchored
to the top of the screen. Blocks below the bottom red line are anchored to the bottom of the
screen. A single block can exist between the two red lines.

LRRLEFIBRLARR EROE

LR

Detail
Configuration Upeats
w0 LIVE

One or more blocks

can be anchored to

the top of the screen

27

Only one block can be
placed in the center of
the screen

1
One or more blocks can
be anchored to the
bottom of the screen

a FEFFEFFFERRPRFR
& i rE B

=
3

7 B

COO00OC0O0OO00000
nH oD EEEEE S

A view in the Builder

Parts of a Block
Blocks are implemented based on a model-view-controller architecture.

The model is the data used in the block. The data comes from the General and Specific
tabs in the Builder as well as from external sources. These tabs, located on the right side of
the screen, provide generic parameters for every block in the Builder. The General tab cov-
ers attributes such as name, background image, fill color, and dimensions.

The Specific tab lets the app producer customize the look of the block based on the param-
eters specified by the block producer in the Master Block. It also lets you define repeating Ul
elements. The example block in this guide, TextListBlock, has three repeating Ul elements.

EachScape, Inc. 5

Developer Guide to Building EachScape Blocks

Layout

Text List —
5o / information

— The items pulldown is
g ' |_— used for repeating Ul
Eax G—
— = elements (also called
o _ settings or arrays)
RS S

The Specific tab

You can also specify a data source using this tab by inserting the filename or the URL of a
spreadsheet or other data resource.

The controller is the code that performs the work of the block, including displaying the
block, handling system-level events, and prompting script actions.

To understand what the controller does, it is helpful to look ahead to the implementation of
a block for a moment. The controller for a block in iOS is implemented through a method
called refreshView.

When a block is loaded at runtime, a number of actions take place. The canvas is readied
to accommodate the block, and data is pulled from external sources to serve the block.
When the block is loaded and all of the data and the canvas are ready, then refreshView

is called to build the view of the block. Handlers for user events, such as tap, pinch, and
swipe, are registered automatically. The code embedded in the handlers obtains data for
the block and allows it to react to events. The handlers can also fire events, which can
invoke script actions.

The Events tab in the Builder associates user interface events with script actions. Clicking
on the small pencil icon launches the script action editor.

On the Events tab on the following screen, there are three repeated Ul elements so that ac-
tions for each group of Ul elements can be defined.

EachScape, Inc. 6

Developer Guide to Building EachScape Blocks

Raw Descriptor &+

i o
Before Draw # Nene
Tap #1 # None
Tapiz @ # Wone
Tap s @ # Mona
Tap Left#1 # Mena
TapLen#z @ # Hone

& None
Nene
& Weone
.49 Mona
Tap Disclosure #1 # Mo

Tap Discksure sz @ &N
Tap Dischosure 33 @ o

* Indizales sonditioral actien

bk

Define a Data Source Filter
Resmaive Data Sowrce Fiker(s)
Specify Sor Order

Switch er View

Actiom. bles

Dedete a Va e

Remove Saved Variable

Save Varable far Future Sesslons
Sera Variable

All Others (A-Z

#Add Event to Calendar

Add Layer

Add to Favarites

Add to To-Da Lis

Call 2 Phone Number

Cancel the Timer

Check In on Foussguare

Create Sarted List

o 1oy Fiesr Reerord

Clicking the pencil icon opens
a drop-down list of actions

Events tab leads to the script action editor

Creating Blocks in the Builder

So far, we've described the architecture of a block and how a block looks to the app produc-
er. The Builder uses a descriptor language to define the structure of blocks. This language

is entered in the Master Block section in the Builder, an area currently accessible only to
EachScape developers. The descriptor language defines a new block from the Builder’s per-
spective. The parameters under the General tab are the same for all blocks. The descriptor
language entered in the Raw Descriptor field determines what appears under the Specific
tab in the Builder.

IText: text
Font: font_spec
lalignment: "Left,Center;Right”
ertical Alignment: "Top;Center,Bottom™
Max Lines:1-10

A

This descriptor language
creates the fields shown in the Specific tab

Hello world. Va

Font @ \Arial 14 Normal #666666
P

Alignment €& [(Left 2|
Vertical Alignment & [Top -]

Descriptor language is used to define what fields the app producer sees on the Specific tab

The descriptor language sets specific parameters for your block, including text fonts, align-
ment, and number of lines. Default settings and item-level help for the Specific tab are also
defined here.

If a block needs to set a variable, the field type variable name is entered in the Raw Descrip-
tor field. For example, to set the variable Save Username, the entry in the Raw Descriptor

EachScape, Inc.

Developer Guide to Building EachScape Blocks

field would include Save Username:variable name. It is important to set variables before firing
an event (otherwise, the event will not have any data to display).

Events that the block can fire are defined in the Supported Events field.

Supported Events @ tap
(separated by commas)

Supported Events field

Remember: the Builder is a design time environment. It allows an app producer to specify
how the app should look and how the blocks should be connected to other components.

Once an app is defined in the Builder, the Generate interface uses the description of the
blocks to create a meta-level description of the application as it was described in the Builder.
This description is then sent to a generator server in the EachScape environment. The
generator uses the metadata to assemble the right code for each platform. Code to imple-
ment each block must be part of the code base for each platform. The later sections of this
guide explain how to write code for iOS and Android platforms.

When the generator has assembled the application for each platform, you will receive an
email with a link to the EachScape server, from which the created app can be downloaded.

Checklist for Creating a Block in the Builder:

Understand what can be specified on the General tab
Decide which parameters you want the app producer to set on the Specific tab

Decide which events the block will handle. These events appear on the Events tab.
From this point onward, the app producer will be able to add script actions to these
events

Use the Master Block interface to enter the descriptor language to describe the block
and the fields that will appear on the Specific tab in the Builder

Use the Master Block interface to define any global variables you need
Establish communication with external data sources

EachScape, Inc.

Developer Guide to Building EachScape Blocks

Creating iOS Blocks

In the Apple iOS operating system, a block is implemented in two classes using the Model-
View-Controller scheme discussed above:

* Block (Model): Acts as a collection of general and specific properties of an application

e Controller (Controller): The code that performs the work of the block, including display-
ing the block, handling system-level events, and prompting script actions

You may wonder why you don’t have to implement a view class. That’s because iOS pro-
vides view classes that work for 90% of the cases you’ll encounter. In those other 10%, you
may want to consider implementing a custom view class of your own.

Both the block and controller classes are implementations of larger, abstract classes. The
Generate process links both the .h files and the .m files via their names to execute the
block’s instructions. This is why it's very important to correctly name all of the elements of
your block, so that they will be picked up correctly by the Generate process.

iOS To-do List

In this section, we describe how to enable block code in iOS.

Implement the block classes you will need. Both of these classes are subclasses of
abstract classes provided by EachScape, ESBlock.m and ESBlock.h. Both classes must be
named properly in order to function, e.g., ES<name>Block.h. For example, to create a block
named TextList, you would create class names ESTexiListBlock.h and ESTextListBlock.m.

//

// ESTextListController.h

// EachScape

//

// Created by Mark Smith on 5/18/09.

// Copyright 2009 EachScape. Al1l rights reserved.
//

#import <UIKit/UIKit.h>
#import "ESBTockViewController.h"
#import "ESImageView.h"

@class ESTextListBlock; €———— Aclass called ESTextListBlock

@interface ESTextListController : ESBlockViewController <UITableViewDelegate,
@private

UITableView *_tableView;

ESTextListCellConfig *_cellConfig;
}

@end

ESTextListBlock extends the abstract class ESBlock.

EachScape, Inc. 9

Developer Guide to Building EachScape Blocks

//

// ESTextListBlock.h

// EachScape

//

// Created by Mark Smith on 5/18/09.

// Copyright 2009 EachScape. A1l rights reserved.

//
#import "ESBlock.h"
#import "ESFontSpec.h" ESTextListBlock extends

#import "ESSetting.h" / the abstract class ESBTock

@interface ESTextListBlock : ESBlock {
@private

}

Implement the Controller classes (controller.h and controller.m). Again, both classes
must be named properly, e.g., ES<name>controller.h. For example, to control a block
named TextListBlock, use ESTextListController.h and ESTextListController.m as class
names. ESTextListController extends the abstract class ESBlockViewController.

//

// ESTextListController.h

// EachScape

//

// Created by Mark Smith on 5/18/09.

// Copyright 2009 EachScape. Al1 rights reserved.

//

#import <UIKit/UIKit.h> ;

#import "ESBlockViewController.h" ESTextListController extendsthe
#import "ESImageView.h" abstract class ESBTockViewController

@class ESTextListBlock; A(/”’//////'

@interface ESTextListController : ESBTockViewController <UITableViewDelegate,
UITableViewDataSource, ESImageViewDelegate> {

@private
UITabTleView *_tableView;
ESTextListCellConfig *_cellConfig;

}

@end

The controller class contains code that must be changed in order to properly link it to its
intended companion block. By doing this, a new class is created. In this case, Controller.h
links to Block.h.

Implement refreshView. The refreshView method is called once all of the data sources
have been loaded into the block, and the view is ready to be drawn. refreshView is where
the block does most of its work to construct and configure the components visible in the
block. The code in the refreshView method draws the canvas, based on instructions from the
blocks. System-level events such as pinching, swiping, or tapping can also trigger a call to
refreshView.

EachScape, Inc. 10

Developer Guide to Building EachScape Blocks

#pragma mark Construction

- (void)dealloc {
self.tableView = nil;
self.cellConfig = nil;

When refreshView is called,

} [super dealloc]; / the block is redrawn

- (void)refreshView {
[self.contentView removeAll1Subviews];

Decide whether you will use the settings object. The settings object is an optional mech-
anism used when one of the things in the descriptor of a block is an array. A button row, for
example, may have three buttons and you need to set the button for position one, two, and
three in the array. A text list has multiple entries. The settings object handles situations like
this. If you don’t have a repeating user interface element, you don’t need a settings object.

If you do need a settings object, in the block.m file, make the settingClass method return the
setting class.

#pragma mark ESBTock

+ (NSString *)type {
return @"textlList"; The setting method must
} return the setting class

+ (Class)settingClass {
return [ESTextListSetting class];
}

In the block.h file, the setting class must extend the ESSetting class. Then, in the block.m
file, you create the implementation of the setting class.

@implementation ESTextListSetting

#pragma mark Public

- (NSString *)item{
return [self expandKey:@"item"]; Inthe block.m file, you create
} the implementation of the setting class

- (NSString *)leftImage {
return [self expandKey:@"leftImage"];

- (NSString *)rightImage {
return [self expandKey:@"rightImage"];
3

@end

Note that no array is declared explicitly. The abstract classes look at the metadata and
create an array based on the number of elements in the descriptor, as specified by the app
producer on the Specific tab in the Builder.

EachScape, Inc. 11

Developer Guide to Building EachScape Blocks

In the BlockController, you can get the settings array using self.block.settings.

Decide how the block will use data. Blocks often get information from one or more data
sources. Information on how blocks get data is beyond the scope of this document.

On the Items

pulldown, the app |
designer specifies o - s
e #1 /

Left Image #1 &

the number of
elements in the array

Text List

Specific

delate)

The designer specified 3,
so there are three sets
of properties

Right Image #2 &

termn 43 8 &

Left mage w3 &

Specify number of elements in the array

Decide what system-level events you will handle. To enable the block to handle system-
level events, the iOS code must register a recognizer.

Creating Android Blocks

Creating Android blocks follows a similar pattern to creating iOS blocks. In Android, a block

is implemented using two classes in the Model-View-Controller scheme. The two classes
are:

Block: This acts as a collection of general and specific properties of an application. In
Android, the block file is called Block.java

Controller: The code that performs the work of the block, including displaying the block,
handling system-level events, and prompting script actions. In Android, the controller file
is BlockViewController.java

EachScape, Inc.

12

Developer Guide to Building EachScape Blocks

Both of these classes are subclasses of larger, abstract classes provided by EachScape.
The block and controller both override methods from the abstract classes while the controller
implements the code.

The header file, Block.java, contains declarations while the file is the code itself. Both Block.
java and BlockViewController.java link to names in the app’s metadata that are passed to
the Generate process to execute the block’s instructions. This is why it's very important to
correctly name all of the elements of your block so that they will not be misunderstood once
the Generate process is underway.

Android To-Do List

In this section, we describe how to write blocks in Android.

Suppose you would like to create a simple block that displays a text list. You would begin
by extending the Block.java class. The naming convention is <name>Block.java. If you're
creating a block called TextListBlock, the new class would be called TexiListBlock.java. You
extend Block.java by implementing two methods: getType and getSettingClass (optional).

Implement getType. This method establishes the type of block you want to create. In this
case, since we are creating a text list block, we would change “<blockName>" to return
Block. TEXT_LIST, a static String with a value of "textList", which is the block’s name in the
Builder, to be used as a reference.

public class TextListBlock extends Block { <€— TextListBlock extends Block

@Override - o

public String getType() { < getType() method returns
return Block.TEXT_LIST; Block.TEXT_LIST

}

Create the setting class, if desired. A block has the option of having a collection of Ul
components displayed multiple times with different values for each collection. The Setting
class contains the information for each collection. These collections of Ul components can
also have their own individual events for the collection as a whole or for the individual Ul
components.

The number of collections can be set on the Specific tab in the Builder, if settings are en-
abled. (Settings are not required for a block.)

You retrieve settings from the Specific tab in the Builder using code like this:

mSettingsList = block.getSettings();

Implement getSettingClass. The naming convention is similar to that of other classes, e.g.,
<name>Setting.java. To create a text block setting class, you would use TextListSetting.java.
Code without a setting class will return null for getSettingClass; code with a setting class will
return the setting class’s name (in this case, TextListSetting.java).

EachScape, Inc. 13

Developer Guide to Building EachScape Blocks

Extend the BlockViewController Class. Now you will need to implement the Controller
class for your text object. The format is <name>ViewController.java. In this example, we cre-
ate a class called TextViewController.java.

public class TextListController extends BlockViewController {

private ListView mListView;

private List<Setting> mSettingsList; TextListController
private AppViewControllerActivity mContext; extends

private FontSpec mFontSpec; BlockViewController

Implement getViewLayout. getViewLayout establishes the Ul view by returning the layout
components that will be drawn onscreen, such as scroll bars, text boxes, and labels. Over-
ride getViewLayout to set the Ul view you want. Additionally, all handlers for system-level
events are registered in getViewLayout.

Use getViewlLayout to setthe Ul view

@Override
public View getViewlLayout(AppViewControllerActivity context) {
mContext = context;
mListView = new ListView(context);
mListView.setAdapter(new TextListAdapter());
mListView.setOnItemClickListener(new OnItemClickListener() {
@SuppressWarnings("rawtypes")
public void onItemClick(AdapterView parent, View v, int position, Tong id) {
//Handle the setting event
mSettingsList.get(position).handleEvent(mContext, EventHandler.TAP, Vv);
}
3
)

Implement setLayoutBackground. This sub-method reads the information about the back-
ground the app producer sets in the General tab in the Builder.

setlLayoutBackground(context, mListView, block);

return mListView; \ setlLayoutBackGround readsthe
} information that the app designer
set in the General tab (here, mListView)

Implement refreshView. The refreshView method is used to refresh the content in the lay-
out with the latest information.

EachScape, Inc. 14

Developer Guide to Building EachScape Blocks

h
@Override
public void refreshView() { When refreshViewis called,
mSettingsList = block.getSettings(Q); < the block is redrawn
if(mListView != null) {
TextListAdapter adapter = (TextListAdapter)mListView.getAdapter();
adapter.notifyDataSetChanged();
mListView.setSelectionAfterHeaderView();
}
h

Set up script actions. Script actions can be associated with the collection of Ul compo-
nents for a setting or with an event associated to an individual Ul component within the col-
lection.

Android Blocks and Dimension Scaling

Android devices are made by many manufacturers, and they have varying screen sizes
even within their product lines. You may wish to set a standard height for your graphical
items on all screens, or, you can control the dimensions of the screen display on the applica-
tion through the block. For example, you can set an absolute setting for the height of a row
by specifying that getRowHeight return 44 pixels.

There’s another option, however. The getScaledDimension method converts absolute pixel
dimensions into the dimensions and resolution needed for devices that are larger or smaller
than the original design. It allows the display to resize automatically to fit the screen of the
device on which the application is running:

public int getRowHeight() {
int rowHeight = Util.zeroIfNotValid(expandKey("rowHeight"));

if(rowHeight == 0)
return 0;

return AppResource.getInstance().getScaledDimension(rowHeight);

}

getScaledDimension
allows the app to scale
appropriately for the device

EachScape, Inc. 15

